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A methodology for the conformational study of cyclic systems

through the statistical analysis of torsion angles is presented. It

relies on a combination of different methods based on a

probabilistic model which takes into account the topological

symmetry of the structures. This methodology is applied to

copper complexes double-bridged by phosphate and related

ligands. Structures from the Cambridge Structural Database

(CSD) are analyzed and the chair, boat-chair and boat

conformations are identified as the most frequent conforma-

tions. The output of the methodology also provides informa-

tion about distortions from the ideal conformations, the most

frequent being: chair $ twist-chair, chair $ twist-boat-chair

and boat $ twist-boat. Molecular mechanics calculations

identify these distortions as energetically accessible pathways.
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1. Introduction

The conformational features of organic (Allen, 2002) and

metallic complexes (Zimmer, 2001) have been extensively

studied. The CSD has proved to be a useful tool in this kind of

study (Allen & Taylor, 2004; Orpen, 1993). In particular, it is

worth mentioning the work of Álvarez and co-workers in

several conformational aspects of transition-metal complexes

(Cirera et al., 2004; Aullón et al., 1999). The CSD has also been

widely applied to life-science research (Taylor, 2002), where it

has turned out to be a very significant tool for the rational

design of biologically active molecules.

A review of different statistical methods for conformation

analysis can be found in Zimmer (2001). These methods take a

data-analysis approach where no model is assumed for the

data-points generation mechanism, and all the conclusions

rely on the correlation structure of the data-points or their

similarities. Hierarchical cluster analysis and principal

components analysis (PCA) are examples of such methods.

Their application to crystallographic data is however made

difficult by the existence of topological symmetry in the data-

points, owing to the fact that there may be no unique, unam-

biguous atomic numbering that can be applied to a given

fragment. To overcome this difficulty Allen and co-workers

(Allen et al., 1991a,b) suggest three agglomerative procedures

for carrying out the conformational clustering of crystal-

lographic data, which are modifications of the single-linkage,

the complete-linkage and the Jarvis–Patrick algorithms.

Continuous symmetry measures (Zabrodsky et al., 1992, 1993)

offer a different approach, which allows the quantitative

evaluation of the deviation from any symmetry in a nonsym-

metric configuration.

In a series of papers (Kessler et al., 2007; Nolsøe et al., 2005;

Pérez, Nolsøe, Kessler, Garcı́a, Pérez & Serrano, 2005; Pérez,

Garcı́a, Kessler, Nolsøe, Pérez, Serrano, Martı́nez & Carras-



cosa, 2005) the authors have developed different statistical

methods that build upon a probabilistic model for the

observed torsion angles: on one hand, in a study by Pérez,

Nolsøe, Kessler, Garcı́a, Pérez & Serrano (2005), a classifica-

tion method and a full Bayesian approach to conformational

classification were applied to cyclooctane structures. The

mathematical details of the full Bayesian approach are

described in Nolsøe et al. (2005). Its implementation is,

however, not straightforward, in particular since it requires

Monte Carlo simulations. On the other hand, an easier-to-use

clustering procedure consisting of a modification of recent

model-based clustering techniques is described in Kessler et al.

(2007), together with a mathematically precise formulation of

the topological symmetries of the data-points. In particular,

this advanced clustering procedure was applied to a dataset

consisting of 204 cyclooctane fragments and related

compounds, and it was shown that the resulting conforma-

tional information is coherent with the expected preferences

for this well studied system.

The main aim of this paper is to propose a methodology for

the conformational analysis of rings which relies on a combi-

nation of the classification method and the model-based

conformational clustering. We illustrate its practical imple-

mentation by performing the conformational classification of

three datasets containing a total of 161 fragments, which

correspond to copper complexes double-bridged by phosphate

and related ligands retrieved from the CSD. This system is

important in the study of metalloenzymes that catalyze the

hydrolysis of phosphate ester bonds in biological molecules. A

systematic variation of ligands and coordination environments

in these biological analogues has provided information about

the structure and function of enzymes. Although zinc is most

commonly found in these enzymes, copper(II) complexes have

contributed to the general understanding of these processes

(Kövári & Krämer, 1996; Fry et al., 2003). Moreover, these

complexes exhibit a topological symmetry which makes the

conformational analysis more challenging.

In order to confirm the conformational results provided by

the statistical methods, molecular mechanics calculations were

carried out and are presented in the paper. Notice that the

statistical methodology is implemented as a JAVA program

called RingConf, which can be freely downloaded from http://

www.dmae.upct.es/ringconf, together with the datasets used in

the present work, therefore allowing the reader to reproduce

our analysis.

The described methodology allows:

(i) The model-based conformational clustering of the frag-

ments, combining a hierarchical model-based algorithm and

an expectation–maximization (EM) algorithm to approximate

the maximum-likelihood estimators of the parameters of

interest (centroids, proportions, standard deviations). As a by-

product of the EM algorithm, the Bayesian Information

Criterion (BIC) is computed to guide the decision about the

number of clusters present in the dataset.

(ii) The automatic expansion of canonical conformations:

starting from the canonical conformations known when all

atoms are the same in the ring, the software performs the

expansion and describes the resulting canonical conformations

in the case of different atoms. As an example, the ten cano-

nical conformations of cyclooctane expand to 21 if rings

corresponding to metal complexes double-bridged by phos-

phate ligands are considered.

(iii) The classification of individual structures with respect

to user-defined preferred conformations. These are generally

the (expanded or not) canonical conformations. This classifi-

cation is particularly applied to the centroids of the clusters

resulting from the model-based conformational clustering

method in order to identify each cluster’s conformation type.

We emphasize the fact that the canonical conformations are

only used for classification purposes, but are not required to

perform the model-based conformational clustering method.

2. The methodology

2.1. Brief mathematical description of the methods

Consider an m-membered ring and denote the associated

sequence of torsion angles by s = (�1, . . . , �m). In Kessler et al.

(2007) an operator Ts,d,� is introduced which transforms s, by

choosing the starting point s in the sequence, the direction d

(d = 1 corresponds to reading through s clockwise, while d =

�1 corresponds to reading through s counterclockwise), and

changing the sign of s by multiplying by � = �1. The

symmetries in the data-points are taken into account by

identifying a subset S of the set of all pairs (s,d), s = 1, . . . , m

and d =�1, for a given sequence of atom symbols, which leads

to two sequences of torsion angles s(1) and s(2) being consid-

ered to be equivalent if a pair (s,d) exists in S and � = �1 such

that Ts,d,� s(1) = s(2). For more details about set S, see Kessler et

al. (2007). When, for example, the ring members are all C

atoms set S contains all the pairs (s,d), with s = 1, . . . ,m and d =

�1. As an example, for cyclooctane fragments the torsion

angles sequences

sð1Þ ¼ ð88:0;�93:2; 51:9; 44:8;�115:6; 44:8; 51:9;�93:2Þ

and

sð2Þ ¼ ð51:9;�93:2; 88:0;�93:2; 51:9; 44:8;�115:6; 44:8Þ

are to be considered as equivalent since T3,�1,1 s(1) = s(2).

The probabilistic model consists of a mixture of an

unknown number of Gaussian multivariate distributions, with

diagonal covariance matrices, but with possibly different

standard deviations. The mean parameters l1, l2, . . . lG of the

Gaussian distributions represent the cluster centroids, while

the standard deviations �1, �2, . . . �G are related to the cluster

diameters. Moreover, we weight the different Gaussian

distributions through the proportions p1, p2, . . . ,pG. Finally,

the topological symmetries of the data-points are incorporated

in the model formulation by considering all equivalent

versions of the sequence of torsion angles. To sum up, the

probabilistic density associated with the data-points is

proportional to
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f ðsÞ ¼
X

k¼1:::G

pk

X

ðs;dÞ in S

X

�¼�1;1

fGðT
s;d;�s; l; �2

kÞ; ð1Þ

s ! fG (s, l, �2) denoting the density of the m-dimensional

Gaussian law with mean l and diagonal covariance matrix

�2
cId.

Three statistical methods that build upon the probabilistic

model described above are used in this paper.

2.1.1. The classification method. As described in the paper

by Pérez, Garcı́a, Kessler, Nolsøe, Pérez, Serrano, Martı́nez &

Carrascosa (2005), if the user specifies the ‘preferred’ confor-

mations by providing the values of the parameters lk (typically

the canonical conformations) and sets the value of �k and pk, it

is possible to perform an individual classification of the given

structure. Based on the m values of the torsion angles for a

structure, we are able, through the Bayes rule, to compute the

posterior probability that the structure comes from each of the

preferred conformations.

2.1.2. The model-based agglomerative clustering method.

An agglomerative hierarchical clustering algorithm is

constructed as a stepwise procedure in which ‘optimal’ pairs of

clusters are successively merged. Such an algorithm usually

starts with as many clusters as observations and ends when all

observations are in a single cluster. Examples of such hier-

archical procedures modified for conformational analysis are

given in the series of papers by Allen and co-workers (Allen et

al., 1991a,b). In these papers different methods are suggested,

relying on different criteria to choose, at a given stage, which

clusters should merge. In model-based clustering, the criterion

for merging two clusters corresponds to a maximum-like-

lihood criterion: the dissimilarity between two clusters is

computed using the classification likelihood; specifically two

clusters are merged if their merging leads to the larger

increment of the likelihood, computed on the basis of model

(1). The mathematical details and the inclusion of the topo-

logical symmetries in the method can be found in the paper by

Kessler et al. (2007).

2.1.3. The EM algorithm method. In the paper by Kessler et

al. (2007) a modification of the mclust procedure suggested by

Raftery and co-authors (see e.g. Fraley & Raftery, 2002) is

described. For a given partition resulting from the model-

based agglomerative clustering method, the Expectation

Maximization (EM) algorithm tries to improve the estimation

of the parameters by computing a numerical approximation of

the maximum likelihood estimators. Using these numerical

approximations the two different partitions can be compared

(e.g. a five-clusters partition and a six-clusters partition) by

computing the Bayesian Information Criterion (BIC) in order

to influence the decision regarding the number of clusters

present in the dataset. Notice that the EM algorithm method is

expected to perform well only when a sufficient number of

data-points is available.

2.2. Practical implementation of the methodology: general
procedure

The procedure followed in this paper to analyze the datasets

essentially consists of three steps:

(i) First step: the classification method is performed on the

dataset to provide a first insight into the assignment of indi-

vidual structures to the user-defined type conformations (for

example, the canonical conformations). In the application of

the classification method, one of the parameters to be fixed by

the user to compute the assignment probabilities is the

common value � of the standard deviations �1, � 2, . . . �G in

model (1). Since model (1) describes a mixture of Gaussian

densities with centers given by the user-defined type confor-

mations and standard deviation �, the assignment prob-

abilities measure the associated probabilistic distance of the

considered fragment to the different centers. If the value of �
is higher, the fragment will be ‘closer’ to more candidate

centers and the assignment probabilities are expected to be

significant for more type conformations. We usually perform

the classification method twice: once using � = 10� and a

second time using � = 20�, checking whether the assignment

probabilities change between the runs. The cases when indi-

vidual structures are assigned to more than one conformation

with significant probabilities provide information about

distortions from type conformations. The classification of

individual structures can also be used to have a first idea about

the approximate number of groups present in the dataset.

(ii) Second step: The model-based agglomerative clustering

method and the EM algorithm are applied: we have to decide

about a possible range of values for the number of groups

present in the dataset. This is a delicate issue common to all

clustering procedures. A first graphical indicator corresponds

to the plot of dissimilarity versus step number (also known as

the merging-cost plot) in the agglomerative clustering method.

This is the simple indicator used in particular in the paper by

Allen et al. (1991a,b). One of the advantages of formulating a

probabilistic model is that, as a by-product of the EM algo-

rithm, we can compute an additional indicator: the Bayesian

Information Criterion (BIC), a popular quantity in model

selection issues. For a review on BIC and model selection in

cluster analysis, see the paper by Fraley & Raftery (2002). For

a given partition of the dataset into G groups, we compute the

BIC value, which we denote by BIC(G), on the basis of model

(1) and using the estimators obtained as a result of the EM

algorithm. The difference between the BIC values for a G-

groups partition and for a (G � 1)-groups partition, i.e.

BIC(G) � B(G � 1), approximates twice the logarithm of the

Bayes factor. It is also interpreted as a summary of the

evidence provided by the data in favor of the partition into G

groups as opposed to the partition into (G � 1) groups. The

higher the difference BIC(G) � BIC(G � 1), the stronger the

evidence in the data in favor of the G groups partition. We

therefore plot BIC(G) versus the number G of clusters in the

partition. We then search ideally for the value of G for which

BIC(G) is maximum. Unfortunately, in real data examples we

have found that BIC(G) simply increases as G increases,

tending to favor more and more groups in the dataset. We

therefore check for significant increments in the BIC values

and search for changes of slope in the BIC evolution as an

indicator of the optimal stop point in the clustering process.

This detection can be made easier through a plot of the BIC
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successive differences: BIC(G) � BIC(G � 1) versus the

number G of groups.

(iii) Third step: Once we have decided upon a range of

values for the number of clusters in the dataset, we study in

detail each corresponding partition. For any of these parti-

tions, RingConf provides estimates of the proportion, i.e. the

fraction of assigned structures, the centroid and the standard

deviation corresponding to each cluster of the partition.

Notice in particular that the estimates of the standard devia-

tion can be used to assess the homogeneity of the structures in

each cluster. Moreover, assignment of the individual frag-

ments to the clusters is given. Finally, it is also possible to

perform a classification of the clusters’ centroids with respect

to user-supplied canonical conformations.

Careful scanning of these outputs together with a chemical

interpretation of the formed groups allows the user to extract

useful conformational information from the data.

Remark: Notice that one of the clusters might present a high

standard deviation which does not reduce significantly as the

number of clusters increases. This indicates fragments which

may be of the same conformational type, but differ signifi-

cantly from one another. This was the case for example for the

dataset 8C1 of Allen et al. (1996, x4.4, p. 888), where seven

fragments out of 32 were left apart in the conformational

analysis.

3. Experimental

3.1. Structural analysis

The Cambridge Structural Database (CSD, Version 5.28;

Allen, 2002) was searched for all the structures containing the

fragment shown in Fig. 1 when M = Cu. The search was

modified so that only structures which present no errors have

a crystallographic R � 0.12 and are not disordered were

retrieved. A total of 91 REFCODES matched the search; the

total number of fragments being 161. Distances, bond angles

and torsion angles were measured by CONQUEST1.8 (Allen,

2002) and transferred to an ASCII text file for statistical and

graphical analysis.

Out of these 91 structures, 35 structures were found to

incorporate several types of phosphate moieties (hereafter

referred to as phosphates), 36 bis(phosphonate) or bis(phos-

phonate ester) complexes (hereafter referred to as phospho-

nates), and 20 bis(phosphinate) complexes (hereafter referred

to as phosphinates). Fig. 1 shows the type of ligands included

in these structures. Nearly all the complexes contain CuII: 35,

29 and 15 structures are phosphates, phosphonates and

phosphinates, respectively.

3.2. Molecular mechanics

The calculations were performed with the strain minimiza-

tion program MOMEC97, Version 2.1.3 (Comba et al., 1997).

The expressions used to compute the potential energy are

given as supporting information1.

The points-on-a-sphere approach (Hambley et al., 1981) was

used, which implies that the O—Cu—O terms are replaced by

O� � �O van der Waals terms. The torsion term O—Cu—O—P

was omitted following a general practice in molecular

mechanics calculations (Comba, 2001).

In the optimization parameters the r.m.s. (root-mean

square) deviation between two structural models was calcu-

lated as the square-root of the sum of the squares of the

deviations between all n corresponding pairs of atoms divided

by the square-root of n. Specifically n was set to 8, since we

considered all the atoms in the eight-membered ring (Cu, O

and P atoms).

Several algorithms and programs have been suggested in

the literature for parameterization (Hunger & Huttner, 1999;

Comba & Remenyi, 2003). In our case parameters were

scanned systematically around the initial values. First of all,

the stretching parameters were optimized and then the

bending parameters were corrected and a finer tuning of the

stretching parameters was carried out again. Finally, the

torsion angle term was optimized. This process was repeated

until no significant improvement was obtained.

In the energy calculations along interconversion pathways,

constraints were applied to torsion angles and the energy was

minimized with MOMEC97 by a full-matrix Newton–Raphson

algorithm. The selected termination criteria for Cartesian

coordinates (r.m.s.) was < 0.001 Å.

4. Results and discussion

4.1. Preliminary theoretical aspects

Ten symmetrical conformations have been established for

eight-carbon cyclic fragments: crown (D4d), twist-boat (S4),

boat-boat (D2d), boat (D2d), twist-chair-chair (D2), chair-chair

(C2v), chair (C2h), twist-chair (C2h), twist-boat-chair (C2) and

boat-chair (Cs). Obviously, the introduction of different types

of atoms in the ring decreases the symmetry. We study the core
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Figure 1
Substructure used in the conformational study. In the CSD search M = Cu
was employed.

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: BS5051). Services for accessing these data are described
at the back of the journal.



shown in Fig. 1 that shows the topological symmetry D2h;

notice that a ring built only of one type of atom exhibits the

topological symmetry D8h.

A corresponding decrease in the symmetry of the point

group for the ten conformations described above is also found.

At the same time, new conformations appear because of the

lower topological symmetry: the sequence of torsion angles

may remain unchanged but the associated sequence of atoms

is different. As a consequence, a total of 21 possible confor-

mations appear when the core shown in Fig. 1 is studied,

referring to the ten canonical conformations of cyclooctane.

Fig. 2 shows these 21 conformations with their corresponding

point-group symmetry. In order to obtain a more general

analysis, bond distances and angles were not considered in the

derivation of these type conformations. The JAVA program

RingConf can be used to automatically expand the ten cano-

nical conformations of cyclooctane to the 21 conformations of

Fig. 2.

Regarding mechanistic aspects, Hendrickson described

three accessible paths for the interconversion of conforma-

tions in cyclooctane: in the symmetrical mode a plane or axis in

the ring remains unchanged (applies to CR$ CC$ BC, CR

$ TCC and BC $ BB conversions); in the pseudorotation

mode a continuous change of dihedral angles takes place

(applies to BB$ TB$ B, TC$ C, CC$ TCC and BC$

TBC conversions) and in the asymmetric mode only one side

of a symmetrical ring is allowed to change as in a wagging of a

single atom, which in general will invert the signs of the two

dihedral angles directly adjacent to it (it applies to the BC$

TC conversion).

The above mechanisms can be applied to the 21 possible

conformations in the system analyzed in this paper. It is thus

possible to establish accessible paths for the interconversion of

conformations in the complexes studied (Fig. 3). By a

symmetrical mode the conversions CR1 $ CCn (n = 1, 2, 3),

BB2$ BCn (n = 1, 2) etc. are possible. In Fig. 3 the symbol s is

used for interconversions by a symmetrical mode. A pseu-
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Figure 2
Conformation type for {Cu(�-OPO)}2.



dorotation mode is also possible, for example TC2 $ C1 $

TC1 $ C2 $ TC3 or BB1 $ TB1 $ B1 $ TB2 $ BB2

conversions ( symbol in Fig. 3). Finally, by an asymmetric

mode the conversions TC1$ BCn (n = 1, 2) and BC3$ TCn

(n = 2, 3) are possible (represented by a in Fig. 3).

4.2. Conformational analysis of copper complexes double-
bridged by phosphate ligands

First step: the classification method showed the most

frequent conformations in these compounds to be C1, B1 and

BC1. Fig. 4 shows the output of RingConf, consisting of a

summary histogram of the frequencies of occurrence of each

canonical conformation, deduced from the assignment of each

fragment to its most likely canonical conformation. An indi-

vidual checking of the posterior probabilities assigned to each

canonical conformation for a given fragment is also possible.

In particular, the appearance of a significant probability for

more than one ideal conformation can be used to identify a

structure as intermediate between two or more theoretical

conformations (Pérez, Garcı́a, Kessler, Nolsøe, Pérez,

Serrano, Martı́nez & Carrascosa, 2005). When setting � = 20�

in the classification method, the most frequent conformation

(C1) turned out to show three kinds of distortions: towards

TBC1, TC1 or TC2 conformations. A table containing the

probabilities for the most likely conformations (� = 10 and

20�) for all the analyzed phosphate complexes (35 structures,

90 fragments) is provided as supporting information. As an

example of the observed distortion towards TBC1, we can

mention the complex bis(m2-cytidine-50-phosphato-O,O0)-

(2,20-dipyridylamine-N,N0)-aqua-copper(II) (Aoki, 1979;

refcode CUCMPA), for which the classification method using

� = 20� yielded probabilities of 0.999 and 0.001 for C1 and

TBC1 conformations, respectively. The distortion towards the

TC1 conformation can be illustrated with bis(m3-

adenosinetriphosphate)tetrakis(2,20-bipyridyl)tetracopper(II)

(Kato & Tanase, 2005; refcode FEYBER): the probabilities

obtained were 0.969 (C1) and 0.031 (TC1). Finally, an example

of distortion towards the TC2 conformation is bis(m2-gua-

nosine-30-monophosphate)-bis(aqua-1,10-phenanthroline)-

copper heptahydrate (Wei et al., 1978), refcode GMPCUP. In

all the above examples when a deviation of � = 10� is used, a

probability of 1.000 is obtained for the C1 conformation. As

can be seen in Fig. 3 distortions towards TC1 or TC2 can be

easily justified by a pseudorotation mechanism. Distortion

from C1 towards TBC1 will be analyzed in the molecular

mechanics section below.

Second step: We applied the hierarchical agglomerative

classification and then computed the maximum likelihood

estimators using the EM algorithm when the dataset is

assumed to be partitioned in k groups, k ranging from 1–15

groups. For each of these possible sizes of the partition, the

BIC criterion was computed. In Fig. 5 the evolution of the BIC

and the corresponding successive differences are plotted

against the considered number of groups (output of Ring-

Conf). We detect a change point for G = 6 and for G = 9 or 10,

which indicates a change in the slope of the BIC values. These

change points are confirmed by a plot of the dissimilarity

versus the step number in the agglomerative clustering

process. We therefore decide to explore a classification of the

fragments into 5–8 or 9 groups.

Third step: Careful scanning of the partitions. Consider a

partition of the dataset into five clusters: the most populated

cluster (29 data-points) shows a low standard deviation (11.56)

and the assignment of the fragments to this cluster as given by

RingConf confirms they were identified as C1 by the classifi-

cation method. There are two small clusters (six data-points

each) with a very low standard deviation (2.0) with CC2/TCC2

and BC1 structures, respectively. The fourth cluster contains 21
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Figure 3
Interconversions of the {Cu(�-OPO)}2 core.

Figure 4
Frequencies of the most likely conformations in phosphate complexes
obtained with the Classification method (RingConf output).



data-points with a standard deviation of 16.6; it contains

mostly B1 structures and all the TB1 ones (as can be seen in

Fig. 3, B1 and TB1 structures are closely related by a

pseudorotation interconversion mechanism). The low stan-

dard deviations for these clusters indicate that they consist of

conformationally homogeneous fragments and they remain

essentially unchanged when the chosen numbers of clusters

varies from 5 to 8. The remaining cluster contains 28 data-

points, and shows a high standard deviation of 55.24, gener-

ating small clusters with very low standard deviations with

TBC1, BC2 or BB2 conformations when the number of clusters

is raised to 6, 7 or 8, respectively. A cluster with a high stan-

dard deviation remains which contains conformers which

differ significantly from one another. These results are

summarized in Fig. 6.

4.3. Conformational analysis of copper complexes double-
bridged by phosphonate ligands

The classification method showed the most frequent

conformation in these compounds to be BC1 (Fig. 7). In all of

them the P atoms appear to be connected by a bridging C

atom, this P—C—P connection probably constrains the

conformation of the eight-membered ring as reported in other

conformational studies (Norenberg et al., 1997). This is

confirmed by the fact that for 11 data-points out of a total of 13

assigned to the BC1 conformation, the classification prob-

ability is 1.000 even when � = 20� is used. An example of these

complexes is catena-butane-1,4-diammonium bis(m4-1-hydro-

xyethylidenediphosphonato)tricopper(II) dihydrate (Zheng et

al., 1999), refcode COYLOR. The C1 conformation (Fig. 7) is

also present, see for example bis(m2-phosphonomethylcarb-

oxylato-O,O0,O00)-bis(1,10-phenantroline)copper(II) (Zhao et

al., 2006), refcode TECNIZ. The probabilities for the most

likely conformations (� = 10 and 20�) for all the analyzed

phosphonate complexes (35 structures, 42 fragments) are

provided as supplementary information.
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Figure 6
Phosphate structures: evolution of the partitions as the partition size
grows.

Figure 7
Frequencies of the most likely conformations in phosphonate complexes
obtained with the Classification method (RingConf output).

Figure 5
BIC and BIC successive differences for phosphate complexes (RingConf output).



When the hierarchical agglomerative classification and the

EM algorithm are used, a four-group partition seems to be

reasonable (the BIC values are provided as supplementary

information): cluster 1 contains 11 data-points and shows a

low standard deviation of 6.6, in fact it contains only structures

which turn out, as confirmed by the classification method, to

exhibit a classification probability of 1.000 for the BC1

conformation, with either � = 10 or 20�. There is also a cluster

with 6 data-points and a low standard deviation of 8.6, which

contains all the C1-classified structures. An additional cluster

with 4 data-points (standard deviation 8.6) is present. The

corresponding structures are classified as TC1 or C2 confor-

mations, which are related by a pseudorotation interconver-

sion pathway. Finally, a cluster with 21 data-points and high

standard deviation of 50.7 is found. This cluster contains

fragments which differ significantly from one another and

remain essentially unchanged when the number of clusters in

the partition increases.

4.4. Conformational analysis of copper complexes double-
bridged by phosphinate ligands

The most frequent conformation in these compounds is C1

(Fig. 8), 13 data-points out of a total number of 29 are assigned

to this conformation, see for example bis(m2-ammoniomethyl-

methylphosphinato-O,O0)diaquatetrachlorodicopper(II)

(Sawka-Dobrowolska & Głowiak, 1983), refcode BOXBIZ or

bis(m2-hypophosphito)-bis(2,20-bipyridine)copper(II) nitrate

(Breneman et al., 2002), refcode LOXSEW. Conformations

TB2 and TC1 are also exhibited by a significant number of

structures (Fig. 8). For this dataset, the probabilities for the

most likely conformations (� = 10 and 20�) corresponding to

all the analyzed phosphinate complexes (20 structures, 29

fragments) can be found in the supporting information.

The BIC values tend to indicate that partitions consisting of

3–7 clusters could be considered. (The BIC values are

provided as supporting information.) When the data-points

are grouped into three clusters by the hierarchical agglom-

erative classification and the EM algorithm, a first cluster of 13

data-points, all classified as C1, is found. A second cluster

which only contains two data-points (TC1 conformation) is

formed, and finally a cluster with 14 data-points and very high

standard deviation contains all the remaining fragments.

When four clusters are selected the C1 cluster described above

splits into two different clusters, the smaller one containing

structures with two torsion angles close to zero.

When the partition size is five, six or seven the cluster with

high standard deviation successively splits, separating TB2,

TCC2 and TC1 structures, respectively. The evolution of the

partitions as the partition size grows can be found in the

supporting information.

4.5. Geometrical features

In order to complete the conformational study and to

optimize parameters for molecular mechanics calculations we

performed the statistical analysis of some distances and angles,

the results being summarized in Table 1. No significant influ-

ence of the kind of bridging ligand was observed. The range of

Cu—O distances is wide; however, 75% of the values are

lower than 2.000 Å, the highest values being related to a Jahn–

Teller distortion. The P—O distances present a narrow range

and similar values in phosphate, phosphonate and phosphi-

nate complexes. The Cu� � �Cu distances present a large

variation, which may be related to the fact that, as can be seen

in Fig. 2, the Cu� � �Cu distance changes drastically according to

the atom position on the ring. Finally, the range of P� � �P

distances is large (Table 1), the lowest values corresponding to

phosphonate structures with P—C—P bridges. Regarding the

coordination number, penta-coordination is by far the most

frequent in phosphates (30 from 35 structures). In phosphi-

nates, values of four or five for the coordination number are

the most frequent (11 and 6 cases, respectively, out of 20

phosphinate structures). Phosphonates show a wide variety of

coordination numbers: 15 penta-coordinated complexes, four

hexa-coordinated, three tetra-coordinated complexes and

some with mixed coordination number (4Cu/5Cu, 4Cu/6Cu or
5Cu/6Cu) out of a total of 36 structures were identified.

The O—Cu—O, Cu—O—P and O—P—O angles were also

analyzed; the mean values and ranges are shown in Table 1; no

significant influence of the type of bridging ligand was

observed.
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Figure 8
Frequencies of the most likely conformations in phosphinate complexes
obtained with the Classification method (RingConf output).

Table 1
Statistical analysis of selected bond parameters (Å, �).

Parameter Mean value Range

Cu—O 2.005 1.825–2.989
P—O 1.518 1.417–1.599
Cu� � �Cu 4.612 2.908–5.510
P� � �P 3.687 2.831–4.890
O� � �O† 3.757 3.030–4.759
O—Cu—O 93.140 78.40–154.46
Cu—O—P 129.497 74.51–163.65
O—P—O 113.455 107.60–125.84

† O atoms in relative positions 1,5.



Out of a total number of 91 structures, 11 structures were

found to have 6Cu. The corresponding double bridge involves

an axial and an equatorial position only for five out of these 11

structures, presenting a difference in the Cu—O distance

around 0.3 Å. This small number does not allow any correla-

tion to be established between the Jahn–Teller effect and the

conformation of the eight-membered ring. Moreover, these

five structures were assigned to different conformations,

namely TC1, TB2 or C1. In tetrahedral complexes no signifi-

cant differences in distances were observed.

4.6. Molecular mechanics calculations

It was established in x4.5 that no significant differences in

bond distances and angles are observed in complexes of

phosphates, phosphonates and phosphinates. Moreover, no

correlation between the conformation of the eight-membered

ring and the coordination number around copper was

detected. For this reason and also for simplicity, a hypothetical

fragment {Cu(�-OPO)}2, see Fig. 1 with M = Cu, was chosen to

carry out the calculations. The use of such a hypothetical

fragment has proved to be useful to study conformational

changes in coordination compounds (Pérez et al., 2004).

The use of tuned molecular mechanics parameters has

proved to be crucial in the statistical studies of crystal-

lographic data (Hocking & Hambley, 2002). In our case,

MOMEC97 does not include suitable parameters for the

fragment studied. It was therefore necessary to start the tuning

procedure with initial parameters taken either from

MOMEC97, from the literature or computed as an average

obtained from selected crystal structures. These selected

structures were chosen to fulfill the following conditions:

representative structures with phosphates, phosphonates and

phosphinate ligands, representative structures presenting

different conformations in the eight-membered ring, no

disordered structures, and CuII and R factor lower than 10%.

In order to avoid the use of several parameters for the Cu—O

stretching owing to the Jahn–Teller distortion, the selected

structures were chosen to have a Cu—O distance lower than

2.40 Å. All the selected REFCODES are provided as

supporting information. The agreement is between 0.167 and

0.382 Å; the r.m.s. values for all the structures are provided as

supporting information, together with the optimized para-

meters. Notice that the selected set of structures turns out to

be very heterogeneous, and presents significant differences,

which may explain the high r.m.s. values.

In previous sections, the chair was established to be the

most frequent conformation, which distorts towards the twist-

chair conformations. This corresponds to the pseudorotation

path TC2$ C1$ TC1$ C2$ TC3 (see Fig. 3). The torsion

angles of the fragment {Cu(�-OPO)}2 were set to vary along

this path and the strain energy was minimized at each point;

the results are shown in Fig. 9. As can be seen, the most

significant contribution corresponds to the torsional compo-

nent. The C1 conformation is situated in a valley of the energy.

The minimum energy is at the TC3 conformation but, as can be

seen in Fig. 2, this conformation would require a drastic steric

accommodation of ligands around the Cu atoms.

The C1$ TBC1 interconversion was also studied using the

values shown in Fig. 10 for torsion angles. There is no signif-

icant variation in strain energy along this path. This is not a

pseudorotation path, but it is an energetically very accessible

distortion path, which can justify the high frequency of the C1/

TBC1 distortion.

The BB2$ TB2$ B1$ TB1$ BB1 pseudorotation path

was also analyzed and the maximum energy was found for the

B1 conformation. The appearance of this conformation can be

attributed to the linkage in the ring rather than to the strain

energy.

We conclude that the results shown in Figs. 9 and 10 are in

agreement with the structural results obtained by the statis-

tical analysis: the C1 conformation is an energetically favour-

able conformation and distortions towards twist-chair and
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Figure 9
Strain energy for the C/TC pseudorotation path.

Figure 10
Strain energy for the C1/TBC1 path.



twist-boat-chair conformations are energetically accessible

pathways.

5. Conclusions

The methodological framework we suggest in this paper

consists of a combination of three statistical methods which, in

contrast to previously reported statistical methods for

conformational analysis, build upon a probabilistic model. We

see several advantages in using these model-based methods:

(i) On one hand, the classification method is a mathemati-

cally simple by-product of the model formulation, and allows

the classification of individual structures with respect to user-

defined type conformations, providing the first insight into the

conformational preferences of the dataset.

(ii) On the other hand, the agglomerative procedure we

have developed uses the probabilistic model to compute the

merging criterion. It relies on a modification of recent model-

based clustering methods which have proved to perform well

in a variety of clustering situations, avoiding for example the

chaining problem known to be associated with simpler clus-

tering methods.

(iii) The choice of the optimal stop point, as a consequence

of the partition size, is a delicate issue common to all clustering

methods. The advantage of basing our analysis on a prob-

abilistic model is that we can compute an additional indicator

to asses the number of groups in the dataset: the BIC quantity.

However, we stress, following Allen and co-authors, that

‘optimal clustering is an essentially subjective judgement to be

made primarily on the grounds of chemical sensibility’ (Allen

et al., 1991b, p. 48).

(iv) The model was formulated taking into account the

topological symmetry of the data-points, thus avoiding their

expansion, which is necessary for example in the PCA.

Moreover these methods, in contrast to the continuous

symmetry measure approach, use a reduced number of

structural parameters, namely eight torsion angles in the

system we have analyzed.

We have illustrated the implementation of the methodology

analyzing copper dinuclear complexes double bridged by

phosphate and related ligands. The obtained results show that:

(i) For structures with no internal bridge in the eight-

membered ring, the preferred conformations are C1 and B1,

regardless of the type of bridge.

(ii) Crown, chair-chair and twist-chair-chair structures are

very scarce.

Notice that the last two points may no longer be valid for

rings with internal bridges.

(iii) The observed distortions basically consist of a twist

from ideal conformations, e.g. C1 distorts towards TBC1, TC1

or TC2. The molecular mechanics calculations we have carried

out confirm that these paths are energetically accessible.

As a conclusion, we think that we have illustrated in this

paper how the combination of the three model-based

methods, implemented in the easy-to-use RingConf software,

may be a powerful tool for conformational study.
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Kövári, E. & Krämer, R. (1996). J. Am. Chem. Soc. 118, 12704–12709.
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